4 votos

Integral con la Delta de Dirac

He calcular esta expresión

$$ \hat{H} = \frac{1}{4}g_2\int d^3R\int d^3r\ \bar{\Psi}(\vec{R}+\frac{\vec{r}}{2})\bar{\Psi}(\vec{R}-\frac{\vec{r}}{2})\left[ \delta(\vec{r})\nabla_{\vec{r}}^2 +\nabla_{\vec{r}}^2\delta(\vec{r}) \right]\Psi(\vec{R}+\frac{\vec{r}}{2})\Psi(\vec{R}-\frac{\vec{r}}{2}) $$

donde $\bar{\Psi}$ es el conjugado de a $\Psi$.

Uso de propiedades de la delta de dirac, puedo decir que $\left[ \delta(\vec{r})\nabla_{\vec{r}}^2 +\nabla_{\vec{r}}^2\delta(\vec{r}) \right] = 2 \delta(\vec{r})\nabla_{\vec{r}}^2 $ ?

Si no, ¿cómo puedo calcular esta integral?

Que debo obtener $$ \hat{H} = \frac{1}{4}g_2\int d^3R\ \bar{\Psi}(\vec{R})\left[ \nabla^2(\bar{\Psi}(\vec{R})\ \Psi(\vec{R}))\right]\Psi(\vec{R}) $$

Puedo calcular el laplaciano de esta manera, pero no estoy seguro acerca de mi hipótesis ($\textbf{r}$ módulo de la dependencia) (aquí, $\phi$ es el mismo de $\Psi$) (Nota: $\textbf{R}$ o $\textbf{r}$ es un 3D-Vector) $$ \frac{\partial}{\partial x}\left\{\frac{\partial}{\partial x}\left[\phi(\textbf{R}+\frac{\textbf{r}}{2})\phi(\textbf{R}-\frac{\textbf{r}}{2})\right] \right\} = \frac{\partial}{\partial x}\left\{ \phi_+'\phi_-\frac{x}{2r} - \frac{x}{2r}\phi_-'\phi_+ \right\} = -\frac{1}{2}\left( \frac{r-x^2/r}{r^2}\right) \phi_-'\phi_+ + \left( \frac{x}{2r}\right)^2 \phi_-"\phi_+ - \left( \frac{x}{2r}\right)^2 \phi_-'\phi_+' + + \frac{1}{2}\left( \frac{r-x^2/r}{r^2}\right) \phi_-\phi_+' - \left( \frac{x}{2r}\right)^2 \phi_-' \phi_+' + \left( \frac{x}{2r}\right)^2 \phi_-\phi_+" $$ y sumando todas las más de las coordenadas \begin{align} \nabla^2_{\textbf{r}}\phi_+\phi_- = -\frac{1}{r} \phi_-'\phi_+ + \frac{1}{4} \phi_-''\phi_+ - \frac{1}{4} \phi_-'\phi_+' + \frac{1}{r} \phi_-\phi_+' - \frac{1}{4} \phi_-' \phi_+' + \frac{1}{4} \phi_-\phi_+'' . \end{align}

Creo que es incorrecto. Un método debe ser la expansión de $\Phi = V^{-1/2} \sum_\alpha a_\alpha e^{i\textbf{k}_\alpha\cdot\textbf{r}}$, pero no tengo ninguna idea de qué hacer!

¿Alguien tiene ideas de cómo calcular esta integral?

1voto

Spencer Puntos 5876

Tenga en cuenta que, $$ \frac{\partial}{\partial x} \delta(x) = - \delta(x) \frac{\partial}{\partial x}, $$

lo que implica que,

$$ \frac{\partial^2}{\partial x^2} \delta(x) = \frac{\partial}{\partial x} \frac{\partial}{\partial x} \delta(x) = - \frac{\partial}{\partial x} \delta(x) \frac{\partial}{\partial x} = + \delta(x) \frac{\partial}{\partial x} \frac{\partial}{\partial x} = \delta(x) \frac{\partial^2}{\partial x^2} ,$$

así que tenemos el resultado,

$$ \nabla^2 \delta(\vec{r}) = \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \delta(x) \delta(y) \delta(z) = \delta(x)\delta(y)\delta(z)\left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) = \delta(\vec{r}) \nabla^2. $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by: