La suma $$\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12}$$ is just a bit larger than $ 1$. Is there some clever way to show this other than to add the fractions together by brute-force? For example, is there some way to group terms together and say something like "These terms sum to more than $ \ frac {1} {3}$, these terms sum to more than $ \ frac {1} {2}$, and these terms sum to larger than $ \ frac {1} { 6}$, so the whole thing sums to more than $ 1 $ "?
Respuestas
¿Demasiados anuncios?
S. Dolan
Puntos
296
Axion004
Puntos
155
Michael Rozenberg
Puntos
677
Hipponax43
Puntos
163
Sin usar ningún método de fuerza bruta, una forma es observar que la suma dada es solo la diferencia de dos números armónicos :
$H_{12}-H_4= {1\over5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} $
y $H_{4}+1<H_{12}$ .